SuperPixel based mid-level image description for image recognition
نویسندگان
چکیده
This study proposes a mid-level feature descriptor and aims to validate improvement on image classification and retrieval tasks. In this paper, we propose a method to explore the conventional feature extraction techniques in the image classification pipeline from a different perspective where mid-level information is also incorporated in order to obtain a superior scene description. We hypothesize that the commonly used pixel based low-level descriptions are useful but can be improved with the introduction of mid-level region information. Hence, we investigate superpixel based image representation to acquire such mid-level information in order to improve the accuracy. Experimental evaluations on image classification and retrieval tasks are performed in order to validate the proposed hypothesis. We have observed a consistent performance increase in terms of mean average precision (MAP) score for different experimental scenarios and image categories.
منابع مشابه
Food Image Recognition via Superpixel Based Low-Level and Mid-Level Distance Coding for Smart Home Applications
Food image recognition is a key enabler for many smart home applications such as smart kitchen and smart personal nutrition log. In order to improve living experience and life quality, smart home systems collect valuable insights of users’ preferences, nutrition intake and health conditions via accurate and robust food image recognition. In addition, efficiency is also a major concern since man...
متن کاملSparse Coding and Mid-Level Superpixel-Feature for ℓ0-Graph Based Unsupervised Image Segmentation
We propose in this paper a graph-based unsupervised segmentation approach that combines superpixels, sparse representation, and a new mid-level feature to describe superpixels. Given an input image, we first extract a set of interest points either by sampling or using a local feature detector, and we compute a set of low-level features associated with the patches centered at the interest points...
متن کاملSparse Coding and Mid-Level Superpixel-Feature for l0-Graph Based Unsupervised Image Segmentation
We propose in this paper a graph-based unsupervised segmentation approach that combines superpixels, sparse representation, and a new midlevel feature to describe superpixels. Given an input image, we first extract a set of interest points either by sampling or using a local feature detector, and we compute a set of low-level features associated with the patches centered at the interest points....
متن کاملSuperpixel-Based Feature for Aerial Image Scene Recognition
Image scene recognition is a core technology for many aerial remote sensing applications. Different landforms are inputted as different scenes in aerial imaging, and all landform information is regarded as valuable for aerial image scene recognition. However, the conventional features of the Bag-of-Words model are designed using local points or other related information and thus are unable to f...
متن کاملImproved Image Denoising Algorithm Based on Superpixel Clustering and Sparse Representation
Good learning image priors from the noise-corrupted images or clean natural images are very important in preserving the local edge and texture regions while denoising images. This paper presents a novel image denoising algorithm based on superpixel clustering and sparse representation, named as the superpixel clustering and sparse representation (SC-SR) algorithm. In contrast to most existing m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Visual Communication and Image Representation
دوره 33 شماره
صفحات -
تاریخ انتشار 2015